Skip to main content

News Flash: German Electric Vehicle sets every-day driving record of 372 miles

It's been interesting to observe how news of a EV from Germany has slowly spread across the ocean. Recently, according to a Deutsche Welle article, a modified Audi A2 which is all-electric, successfully completed 372 mile journey from Munich to Berlin on a single electric charge.

This is very significant because the range of electric vehicles has always been the Achilles heals of the technology. Electric vehicles in the past have been limited by the low energy densities of the battery making EVs of the past very heavy and limiting their range to about 60 miles. The upcoming Nissan Leaf which will rely on a compact Lithium Ion battery can reach distances of 62-138 miles depending on the driving style. Although a significant improvement good enough to satisfy the needs of 80% of US drivers, the range is still significantly shorter than what a typical car using the combustion engine can do (about 300-400 miles). The Audi A2 is the first vehicle that can produce these ranges under relatively normal driving conditions.

How did it manage to produce these ranges?

Details are still sparse. But two factors should be noted.

On the one hand, the Audi A2 is a rather compact car. Compact sizes cut down on weight and hence energy required to propel the vehicle.

The other factor is of course the battery technology. According to UPI, the battery manufacturer (DBM Energy), uses a technology they call "KOLIBRI AlphaPolymer Technology". DBM Energy notes on their website that although the battery uses lithium, the battery is not a lithium ion battery in a traditional sense: there is no danger of leaking liquids, toxic gases or explosions associated with lithium ion batteries. Instead, DBM energy states that their lithium polymer technology is a solid-state battery in which layers of a proprietary membrane and a special electrolyte mixture combine to produce leap-frogging energy density gains. The result: smaller, lighter batteries for a given energy requirement, fast recharge (as little as 6 minutes) using a regular power chord.

On a personal note...

As of late, there has been some discussion about the potential of German solar energy to overload the German grid. I am skeptical as to the powers that might have caused the stir up of this debate. However, this debate highlights an important point. Renewable energies by nature can be sporadic. If countries around the world would like to rely more on renewable energies, it becomes more important to store energy when it is produced in excess to tap into when energy demand outpaces production. I think this technology is quite exciting because battery technologies from DBM and other companies could also be applied to these challenges.

Popular posts from this blog

Sustainable Living: Sunscreens

This is an important topic and so I want to get the most important things out of the way first:

Chemical sunscreens containing the following ingredients contribute to coral bleaching: 
OxybenzoneOctinoxateOctocrylene (used to also stabilize avobenzone)4-methylbenzylidine camphorAnything containing Parabens Don't be part of the problem and avoid using them! It's important to note that claims on sunscreens are not regulated and therefore, companies can put the wording "coral reef safe" on the packaging even though they contain the above chemicals. This is misleading if not outright false. Instead use "physical" sun screens that contain non-nanoparticle zink oxide. Physical sun screens differ from chemical sunscreens in that the sit ontop of the skin to reflect or scatter UVA/B rays away from the skin before it reaches it. Chemical sunscreens absorb the UVA/B rays instead to neutralize them.

To be clear, I am not proposing not using sunscreen! Instead use phys…

Focus on Algae - Part II: Energy

In the last focus section, we discussed how algae can be used to treat waste waters and mitigate CO2 in the process. Today's post will explore how algae can be used for energy generation. As already mentioned in the last time, biofuels have become very visible as of late due to environmental, economical and geopolitcal reasons. If at the heart of traditional biofuel generation lies in the creation and decomposition of biomass, then it would be easy to substitute corn or other less controversial land-based plants with algae. Although a lot of attention is paid to the use of algae in biofuel generation, and this article also mainly focusses on this aspect, it should be noted that algae can also be used to generate electricity by direct combustion of the biomass. Plans for these kinds of schemes are already on the way in Venice and a few other European locations [1].

Algae and Biofuels

What happens to the biomass after it has been created depends on the type of biofuel that is desired…

Sustainable Living: One man's trash...

Since Earth Week is starting tomorrow, I wanted share with you some concrete ways of how individuals like you and me can make an impact on a wider scale. I then also wanted to use this example to challenge everyone to think creatively about the larger context.

So you know how the saying goes: "One man's trash is another one's treasure." Today, I want to talk to you about garbage. Plastic garbage specifically. Plastic is quite a wondrous material. Made from oil by man with just a few additives can turn this polymer into so many different sorts of plastics with so many different properties from thin and flimsy plastic bags, to the carpet on which I am standing, to this plastic bottle from which I am drinking.