Skip to main content

R&D News: Are we a step closer to recreate life?

Paint-By-Numbers Statue of Liberty
In the latest Science Issue, the Venter Lab (Gibson et al. 2010) report that they have successfully created an "artificial genome" Mycoplasma mycoides which they transplanted into Mycoplasma capricolum cell to create a new Mycoplasma mycoides cell. In other words, they put the DNA of "A" into an organism of type "B". Just by doing so, they "converted" B into A. This begs the question....

So what?

The dream of creating artificial life - that is to say recreate life from scratch with inanimate starting components - has been the dream of some researchers that want to get at the question of:"What is life?" Of these researchers, Craig Venter probably has been the most recognized figure. Craig Venter claims that understanding how one can create life from scratch will also give us the ability to create purpose-driven life-forms. With the current oil spill an example comes to mind where one could create much better bacteria from scratch that would digest oil leaking from the ocean floor. But there are many other possible uses - both positive and potentially detrimental. Regardless, there is quite an intellectual challenge associated with trying to recreate life.

What exactly is needed and what obstacles need to be overcome?

Conceptually, the idea is simple. To make life, one simply should:
  • Make DNA.
  • Insert DNA into a "proto" cell - something with a plasma membrane around and other cell machinery. (This in itself is a challenge.)
  • Push the start button.
Until recently it wasn't clear that one could just change an organism by replacing the DNA. In a previous publication, the Venter lab tackled this question by demonstrating that one could take the genome of organism A, and when put into the nucleus of organism B, it would convert B into A simply said.

The difference between the previous publication and this one was that in this one, they used their own "test-tube" made DNA. This may seem trivial but in reality there are many challenges associated with this.

  1. Making DNA: The first challenge is trying to string together 1,000,000 base pairs is not easy because we do not have the technology to do it. The Venter lab tackled this problem by inserting specially designed overlapping fragments of DNA into our baker's yeast and let the yeast cells figure out how to knit these overlapping DNA pieces together.
  2. Getting DNA into the cell: The second challenge was trying to get the lab-created DNA into the second organism. It turns out that the recipient cell has its own defense mechanisms. DNA recognized as "foreign" gets cut into pieces on sight. So simply inserting freshly created lab DNA lead to failure because the recepient cell recognized the new DNA as foreign. To circumvent this problem, the Venter lab came up with two approaches. In one approach, they disabled the recipient defense mechanisms. Native DNA is distinguished from foreign DNA by the presence or absence of little tags on the DNA. In the second clever approach, Gibbs et. al. disguised the new lab DNA by putting on these tags (metyhl groups) at locations where they are also found in the "native" DNA.
Why did this appear in the Science Headlines?

This publication is a culmination of all the technologies developed in their lab in the previous steps. The important things to note are:

  1. If we draw an analogy to computers, the Venter lab demonstrates that DNA is sort of like the software to run the hardware (the rest of the cell). So by inserting different sorts of softwares, we can make the hardware do different things. In this case we are not just talking about superficial changes, but about an entire change in the operating system.
  2. Did we create artificial life? Well, not quite just yet. In an analogy, at this point, even if we still can't recreate our life-like artistic painting from scratch, we can at least assemble some of the pre-made components, and if we are given some sort of blueprint, we can now  paint by numbers. Despite how belittling this may sound, this is a very significant step towards eventually creating our own paintings. 
I encourage everyone to read the original which is linked in the Literature Cited section below.

Literature Cited:

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome
Science 21 May 2010:
Vol. 328. no. 5981, pp. 958 - 959

Popular posts from this blog

Sustainable Living: Sunscreens

This is an important topic and so I want to get the most important things out of the way first:

Chemical sunscreens containing the following ingredients contribute to coral bleaching: 
OxybenzoneOctinoxateOctocrylene (used to also stabilize avobenzone)4-methylbenzylidine camphorAnything containing Parabens Don't be part of the problem and avoid using them! It's important to note that claims on sunscreens are not regulated and therefore, companies can put the wording "coral reef safe" on the packaging even though they contain the above chemicals. This is misleading if not outright false. Instead use "physical" sun screens that contain non-nanoparticle zink oxide. Physical sun screens differ from chemical sunscreens in that the sit ontop of the skin to reflect or scatter UVA/B rays away from the skin before it reaches it. Chemical sunscreens absorb the UVA/B rays instead to neutralize them.

To be clear, I am not proposing not using sunscreen! Instead use phys…

Focus on Algae - Part II: Energy

In the last focus section, we discussed how algae can be used to treat waste waters and mitigate CO2 in the process. Today's post will explore how algae can be used for energy generation. As already mentioned in the last time, biofuels have become very visible as of late due to environmental, economical and geopolitcal reasons. If at the heart of traditional biofuel generation lies in the creation and decomposition of biomass, then it would be easy to substitute corn or other less controversial land-based plants with algae. Although a lot of attention is paid to the use of algae in biofuel generation, and this article also mainly focusses on this aspect, it should be noted that algae can also be used to generate electricity by direct combustion of the biomass. Plans for these kinds of schemes are already on the way in Venice and a few other European locations [1].

Algae and Biofuels

What happens to the biomass after it has been created depends on the type of biofuel that is desired…

Sustainable Living: One man's trash...

Since Earth Week is starting tomorrow, I wanted share with you some concrete ways of how individuals like you and me can make an impact on a wider scale. I then also wanted to use this example to challenge everyone to think creatively about the larger context.

So you know how the saying goes: "One man's trash is another one's treasure." Today, I want to talk to you about garbage. Plastic garbage specifically. Plastic is quite a wondrous material. Made from oil by man with just a few additives can turn this polymer into so many different sorts of plastics with so many different properties from thin and flimsy plastic bags, to the carpet on which I am standing, to this plastic bottle from which I am drinking.