Skip to main content

R&D News: Eco-Friendly Way of Degrading BPA-Plastics

What was done?

I came across an interesting article yesterday titled “Biodegradation of Physicochemically Treated Polycarbonate by Fungi” published in Biomacromolecules. What this group essentially did was to isolate fungi from the environment by exposing them to conditions in which plastics were the only source of food. The group basically identified three fungi (Phanerochaete chrysosporium, Engyodontium album  and Pencillium spp.) , and characterized some of the parameters by asking basic questions about:
  • Efficacy changes when fungal isolates were exposed to certain pre-treatments (either heat or UV light).
  • Growth of biomass (how much the fungi grew during this time)
  • How much extracellular protein was secreted and a crude determination of the class proteins released
  • Loss of mass of the piece of plastic
  • Changes in physical, chemical and surface properties.

Why is this important?

I asked myself the same question until I realized what plastic they were working with: Bisphenol A Polycarbonate or BPA containing plastics in other words. BPA is used to create clear, and shatter-free plastics.

For those who don’t know, BPA has recently entered the health news because of concerns on its effect on human health. The effects of BPA were first accidentally discovered in laboratory rats in which female mice all of a sudden had reproductive problems after changing the wash detergent used to clean the animal cages. The sudden effects puzzled the researchers until they were able to find the cause: The new detergents used in cleaning the animal cages dislodged BPA from the plastics. BPA was determined to be an endocrine disruptor in rats which means that it basically disrupts the hormonal cycles especially in female rats leading to fertility problems. The astonishing discovery was that the effects of BPA did not only affect the rat who was exposed to BPA, but that even the children of the mother were still affected. Although the plastics industry has officially stated that the human effects have largely been undetermined, many producers have voluntarily phased out the use of BPA due to pressure from consumer groups as well as the general scare within consumers.

What is the take-home message?

Although the use of BPA has been phased out, the question remains what will happen to all the plastics that have already been produced. What happens for instance when BPA leaches out of the plastics in land-fills and enters the ground water system where often times drinking water is drawn from? BPA has already been shown to have leached into the oceans where many scientists are very concerned about BPA's effects on marine life. This article crudely shows that we can safely bio-degrade BPA-containing plastics without releasing BPA to the environment. In previous articles, I have talked about how bacteria, or algae can be used to bioremediate (clean up the mess we produced) different sorts of pollutants. This article shows the potential of using certain fungi in the bio-degradation of BPA plastics.

Literature Cited

Trishul Artham and Mukesh Doble. "Biodegradation of Physicochemically Treated Polycarbonate by Fungi." Biomacromolecules, 2010, 11 (1), pp 20–28. Link:

Popular posts from this blog

Focus on Algae - Part I: Bioremediation

After spending the last few blog posts on different aspects of dissimilatory bacteria, I want to switch the focus to a different class of organisms I have been interested in for a long time now. These are the algae. Algae comprise a large diversity of "sea weeds" and an even larger variety of single-celled organisms that mostly are capable of doing photosynthesis. They include the ordinary sea-weed, and make up a portion of the green slime found around the edges and the bottom of a pond. More exotic types of algae can live symbiotically - that is together with another organism in a mutually beneficial way. Lichens are an example of symbiotic relationship between algae and fungi. More information about the evolution and lineage of algae can be found in this wiki article.
Image via Wikipedia
Typically, these organisms are either not mentioned at all or only in conjunction with toxic algal blooms. But lately, algae, of course, have been in the news recently because of the promi…

Journal Club:”Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria” - OR: How Bacteria Hook up to Share Energy

Another curious observation made the science rounds the past week: wired, electric bacteria. Reading this article reminded me of a review article on dissimilatory bacteria I read before, and one of the most interesting talks I ever attended in my life titled "Eavesdropping on Bacterial Conversations".

What did they do?

Summers, who is Microbiologist working in the Lovley lab at the University of Massachusetts, was studying Fe(III) reducing bacteria in the soil. They wondered what would happen when Fe(III) reducing bacteria would deplete Fe(III) available in the soil. In order to study this question, the research group co-cultured two strains of geobacter bacteria: Geobacter metallireducens and Geobacter sulfurreducens. The research team thought that combining the former bacteria that can oxidize ethanol in order to obtain energy, but normally must pass obtained electrons onto Fe(III) which was not present in the solution, with the latter strain which cannot metabolize, but c…