Skip to main content

Part III: Dissimilatory Bacteria in Uranium Reduction

Last time, we explored how dissimilatory bacteria can be used to generate electricity in devices called Microbial Fuel Cells. In part one, I mentioned that the dissimilatory properties of bacteria like Shewanella can potentially also be used for solving part of the problem of radioactive uranium contaminations. When I mentioned this idea to my friend who is a soil scientist, I realized that I did not know how these bacteria can be used to contain uranium contamination. Curious about how exactly this works, I found a review article titled “Uranium Reduction” in the Annual Review of Microbiology written by Judy D. Wall and Lee R. Krumholz (Vol. 60: 149-166, Oct 2006). Following is a summary of what I found.

Uranium is a metal with the symbol U on the periodic table. It has the atomic number 92 which means that it has 92 protons and electrons. In nature, occurs in three different forms U-238 (~ 99.238 %), U-235 (0.711 %), and U-234 (0.0058%) where each number refers to the combined number of protons and neutrons [1]. All forms are slightly radioactive, but it is the ability of this metal to react with any non-metal that makes this metal chemically very toxic [2].

Most people may not know that uranium contaminations are a problem. Part of it has to do with the fact that uranium is not rare being the 49th most abundant element in the earth crust. In recent years, with the advent of nuclear power, and nuclear weaponry, mining, refining, and nuclear testing has lead to different forms of environmental contamination in some areas. Just within the United States, the Department of Energy (DOE) has identified 120 sites covering 7280 km2 in 36 states and territories. This is about equivalent to the area of the entire urban area of New York City. Mining of uranium in Colorado, New Mexico, and Arizona for example has led to local contaminations of the water as uranium salts leach into the ground water.

The solution to soil and water contaminations is normally to employ microorganisms to bioremediate the contaminated area. Specialized bacteria are able to break toxic contaminants down into less toxic substances.

The problem with uranium and other heavy metals is the ability of these metals to form water soluble complexes and compounds with other non-metallic and organic substances that are often harmful to living organisms when consumed. Heavy metals being elemental also cannot be broken down any further. Because of that the only currently known strategic approach to bioremediation of heavy metals of contaminated soils is to decrease availability of the heavy metal to living organism (called bio-availability).

In water or soil sources, uranium is mostly present as soluble salts in form of uranyl (UO2+2) which has an oxidation state of U(+6). Many metals have the ability to assume different oxidation states. It turns out that when uranium has an oxidation state of +4 only it becomes much less water soluble. By changing the oxidation state, thus, uranium could be precipitated out of the water. As a reminder, dissimilatory bacteria are capable of externally passing electrons onto metal oxides. By gaining electrons, the metal oxide is reduced to a lower oxidation state. It turns out that a growing number of dissimilatory bacteria are capable of reducing uranium. Our friend Shewanella is one of them.

Many issues remain to be solved. Some include the possibility of redissolving precipitated uranium, and the question of how to sequester the precipitated uranium to to contain its spread, but the ability to use microorganisms to precipitate uranium out of groundwater represents an important step because this reduces the bioavailability of uranium to living organisms.

Comments

Popular posts from this blog

Focus on Algae - Part I: Bioremediation

After spending the last few blog posts on different aspects of dissimilatory bacteria , I want to switch the focus to a different class of organisms I have been interested in for a long time now. These are the algae. Algae comprise a large diversity of "sea weeds" and an even larger variety of single-celled organisms that mostly are capable of doing photosynthesis. They include the ordinary sea-weed, and make up a portion of the green slime found around the edges and the bottom of a pond. More exotic types of algae can live symbiotically - that is together with another organism in a mutually beneficial way. Lichens are an example of symbiotic relationship between algae and fungi. More information about the evolution and lineage of algae can be found in this wiki article . Image via Wikipedia Typically, these organisms are either not mentioned at all or only in conjunction with toxic algal blooms. But lately, algae, of course, have been in the news recently because of the p

In Other Words: A Life on Our Planet

I just watched this documentary together with my son and my wife. Different from David's typical approach of sparse objective commentary, this documentary movie is a personal witness statement that David Attenborough is making describing how our planet has changed in his life time. It's compelling, and urgent but still hopeful.   Please, watch this documentary and share with your friends so they get the message!

Sustainable Living - One Step at a time: Toilet Paper

Introduction It's been a while since last, I posted here. Today, I want to introduce another blogging series which I call "Sustainable Living - One Step at a time" In the past, I have often written and talked about interesting new technologies and ideas in the biological field, some of which could be used to reduce the impact human kind makes on the environment. Although many dedicated brains are tackling these interesting challenges, there are even more who are not working in these kinds of fields. What can other people do to reduce one's impact on the environment? Generally, by adapting a more sustainable approach of living.  Because so many habits and other aspects of life would need to be changed, many people may not feel that it is worth pursuing these efforts because the perceived sacrifices would be too big. Alternatively, one may not know where to start. I do not exclude myself it the latter group. So, instead of trying to do everything at the same tim