Skip to main content

Freely Speaking: Human Cells Become Living Laser

This is just a quick note on what's caught my eye in the last day or so: Two researchers from Harvard Medical School and Massachusetts General Hospital in Boston successfully created what they call a "living laser".

How did they use a living cell as a laser?

I realized that I didn't exactly how a laser worked so I looked it up on Wiki. According to Wikipedia, "Laser" stands for "Light Amplification by Stimulated Emission or Radiation". To build a laser, you basically need a light source, some device that absorbs the original light source and then emits an amplified signal also called "gain medium". The key to lasers is that the light is uniform and does not scatter all over the place - it's one bundle of light. This is performed be some complicated sets of optical mirrors. Normally, crystals (like ruby) are used for the gain medium, but in this case, a kidney cell expressing GFP was used. So technically, a cell does not replace the entire traditional laser setup. It just replaces one component of the laser - the gain medium.


Interesting but what is this useful for?


The authors imagine possible uses for medical diagnostics or ways to study the state of individual cells. Purely speculating here, but I wonder if the property of these cells could be used somehow to further increase the spectrum and penetration of the usable light spectrum into photobioreactors growing photosynthetic organisms to increase efficiencies and eliminate dead spots. Like with the original invention of the laser, individual uses were hard to predict at the time. Nowadays, so many applications rely on lasers. Will the same thing be true for "living" or "bio-based" lasers?

Source:

You can read a commentary here: Nature News Commentary
The original article can be obtained here (subscription required): Original Nature Photonics Journal Article

Comments

Popular posts from this blog

Focus on Algae - Part I: Bioremediation

After spending the last few blog posts on different aspects of dissimilatory bacteria , I want to switch the focus to a different class of organisms I have been interested in for a long time now. These are the algae. Algae comprise a large diversity of "sea weeds" and an even larger variety of single-celled organisms that mostly are capable of doing photosynthesis. They include the ordinary sea-weed, and make up a portion of the green slime found around the edges and the bottom of a pond. More exotic types of algae can live symbiotically - that is together with another organism in a mutually beneficial way. Lichens are an example of symbiotic relationship between algae and fungi. More information about the evolution and lineage of algae can be found in this wiki article . Image via Wikipedia Typically, these organisms are either not mentioned at all or only in conjunction with toxic algal blooms. But lately, algae, of course, have been in the news recently because of the p...

Permaculture: nature is still smarter than us

Permaculture In the year 2010, there are many aspects of humans' daily life that would lead us to believe that we have dominated nature. Unlike the thousands of other species that have gone extinct, we have settled and thrived in almost every environment and every continent on this planet, aside from Antarctica. We have eradicated diseases like smallbox and subdued other diseases which previously decimated our populations on a massive scale (see The Black Death in the 1300s and Columbus' “discovery of the Americas in 1492). We have created chemicals that allow us to blast weeds and insects into submission and thereby cultivate thousands of acres of the same species on farmland; an environment that would be impossible in nature. But nature is still smarter than us. A lot smarter. And we still have much to learn from its processes. Permaculture is the idea of mimicking the ways that ecosystems work in the context of essential human activities: house and settlement design, farming...

Journal Club:”An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae”

Cover of Science Issue 335. It has been a while since we have done a journal club , and so today I thought I would write about an article I recently read. Adam J. Wargacki, who works in Yasuo Yoshikuni's group, recently published the above titled paper. In light of problems associated with the use of fossil energy sources (cost, scarcity, environmental impact, and geopolitical considerations), the search for new energy sources is starting to become more important. The paper in discussion today proposes that a coupled system consisting of brown macroalgae and engineered bacteria could be used. Of course there are more traditional biofuel feedstock sources such as corn and sugarcane. There a couple of hurdles such as the debate about “food versus fuel” and technical hurdles such as the degradation of lignocellulosic matter that need to be solved. We have previously discussed how microalgaecould get around the difficulties of corn and sugarcane in the production of bioefu...