Skip to main content

Journal Club:”A Bacterium That Can Grow by Using Arsenic Instead of Phosphorous”


Since the previous journal club where we covered an article that looked at the microbial synthesis of alkanes, another a curious observation made the rounds in the science world. In the latest Science Journal, Felisa Wolfe-Simon et. al. report their successful isolation of a bacteria that can use arsenic instead of phosphorous.

The group isolated the bacterial strain called, GFAJ-1, by inoculating synthetic media containing glucose, vitamins and trace metals and varying concentrations of AsO43- with sediments from Mono Lake which naturally contains high concentrations of dissolved arsenic (200 M) and performing many serial dilutions. GFAJ-1 was identified to belong to Halomonadaceae family of Gammaproteobacteria.


Various tests were performed to verify that these organisms could not only live but procreate in this environment. Among the remarkable features of this organism is the observation that arsenic can get incorporated into macromolecules most notably DNA where it replaces the need for phosphorous in the backbone. Despite similar chemical properties of AsO43-and PO43- down-stream processes can be affected by the presence of AsO43-explaining the toxic effects of arsenate. It is even more remarkable that this bacterium can switch between the use of AsO43- and PO43-although it has to be noted that the organisms grow much faster in media containing phosphate instead of arsenate. Details on how arsenic was incorporated into macromolecules and how the organism can deal with varying concentrations of arsenic and phosphorus are currently unknown but will surely be part of future publications.


Why is this so important?


There has been the long-standing view that life on earth is mostly based on carbon, hydrogen, nitrogen, oxygen sulfur and phosphorus. The observation that phosphorus which builds the backbone of DNA can be replaced by arsenic expands the view of possible biochemistry that can take place in other parts of the universe.


From an environmental point of view, dissolved arsenic is toxic to most life due to the similar but but not quite identical properties of arsenic which allows some reactions to take place while inhibiting others. Could bio accumulation of arsenic by used to clean up arsenic contamination sites? 


P.S (2011-02-18).: The journal club would not be complete if I did not mention that some people remain skeptical of the claim that arsenate can replace phosphate in these organisms. The criticicsm centers around some of the assumptions underlying some of their indirect methodologies. An alternative hypothesis was suggested: Rather than arsenate incorporation, some scientists hypothesize that arsenate is rather sequestered. Great claims require great proofs which in the minds of these scientists had not been brought forward. In response to the criticism the author decided to submit the strain to two publically available culture collection centers (the American ATCC and the German DSMZ) to allow for their more widespread studies.
 
Literature Cited:


Felisa Wolfe-Simon et. al. "A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus."
Science Express, December 2, 2010, pp 1-9

Link: http://www.sciencemag.org/content/early/2010/12/01/science.1197258.full.pdf

Comments

Popular posts from this blog

Permaculture: nature is still smarter than us

Permaculture In the year 2010, there are many aspects of humans' daily life that would lead us to believe that we have dominated nature. Unlike the thousands of other species that have gone extinct, we have settled and thrived in almost every environment and every continent on this planet, aside from Antarctica. We have eradicated diseases like smallbox and subdued other diseases which previously decimated our populations on a massive scale (see The Black Death in the 1300s and Columbus' “discovery of the Americas in 1492). We have created chemicals that allow us to blast weeds and insects into submission and thereby cultivate thousands of acres of the same species on farmland; an environment that would be impossible in nature. But nature is still smarter than us. A lot smarter. And we still have much to learn from its processes. Permaculture is the idea of mimicking the ways that ecosystems work in the context of essential human activities: house and settlement design, farming...

Journal Club:”An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae”

Cover of Science Issue 335. It has been a while since we have done a journal club , and so today I thought I would write about an article I recently read. Adam J. Wargacki, who works in Yasuo Yoshikuni's group, recently published the above titled paper. In light of problems associated with the use of fossil energy sources (cost, scarcity, environmental impact, and geopolitical considerations), the search for new energy sources is starting to become more important. The paper in discussion today proposes that a coupled system consisting of brown macroalgae and engineered bacteria could be used. Of course there are more traditional biofuel feedstock sources such as corn and sugarcane. There a couple of hurdles such as the debate about “food versus fuel” and technical hurdles such as the degradation of lignocellulosic matter that need to be solved. We have previously discussed how microalgaecould get around the difficulties of corn and sugarcane in the production of bioefu...

In Other Words: A Life on Our Planet

I just watched this documentary together with my son and my wife. Different from David's typical approach of sparse objective commentary, this documentary movie is a personal witness statement that David Attenborough is making describing how our planet has changed in his life time. It's compelling, and urgent but still hopeful.   Please, watch this documentary and share with your friends so they get the message!